

DIAMOND DRESSERS

DIAMOND DRESSERS

INNOVATOR IN TECHNOLOGY

EHWA DIAMOND

Since 1975, Ehwa Diamond has been growing rapidly by developing long-term partnerships with customers worldwide and continues to strive towards excellence in providing the very best customer satisfaction through product innovation and improvements.

SDD (Single-point Diamond Dressers)

Manufactured by sintering a selected diamond crystal with metal matrix into a steel shank.

FDD (Forming Diamond Dressers)

Manufactured by shaping a selected high-quality diamond.

MDD (Multi-point Diamond Dressers)

Two or more selected diamonds are set in metal matrix.

IDD (Impregnated Diamond Dressers)

Manufactured by sintering selected diamond particles with metal matrix.

PCD dresssers

Manufactured by brazing Poly-crystalline diamonds.

Contents

Materials 4
Comparison chart by material 5
SDD (Single-point Diamond Dressers) 6
(Natural / Synthetic)
FDD (Forming Diamond Dressers) 9(Roof / Chisel / Cone)
MDD (Multi-point Diamond Dressers) 12
(Natural / Blade types)
IDD (Impregnated Diamond Dressers) 16
(Non-patterned IDD / Patterned IDD) Special tools 18
(Burnishing tools / PCD / Contact gauges)

Applications	Diamond dressers
- Used for straight type conventional abrasive wheels. - Used for simple profile, thread and gear grinding abrasive wheels.	SDD, IDD
- Used for straight type and conventional abrasive profile wheels. - Able to dress complex forms and profiles with precision.	FDD, MDD
- Ideal for dressing larger and wider conventional abrasive wheels. - Used for dressing conventional surface and center-less abrasive wheels.	MDD, IDD
- Used for dressing complex forms and profiles.	PCD dressers

Expression of EWHA diamond dressers
SDD - A 01

Dresser type
\qquad

Materials

- Synthetic diamonds

F: MONO CRYSTAL
Almost same property as natural diamond
Applications : SDD, FDD

G: CVD (Chemical Vapor Deposition)
Applications : SDD, FDD, MDD

H: PCD
Applications: PCD dresser

A: OCTAHEDRON
Point angle 90 degree / Applications : SDD, Natural diamond-MDD

D: MACCLE
Triangle shape
Applications : FDD chisel type

B: DODECAHEDRON
Point angle 120 degree / Applications :
SDD, Natural diamond-MDD

E: SHAPE
Round, Flat shape
Applications : FDD chisel type

Comparison chart by material

Property	Natural Diamond	Mono Crystal	CVD Diamond	PCD	WC (K10)
Thermal conductivity (W/mK)	2000	2000	1000	560	110
Hardness (GPa)	$50 \sim 100$	$50 \sim 100$	$80 \sim 100$	50	18
Toughness (MPam-m²)	3.4	3.4	$5 \sim 6$	$8 \sim 9$	10.5
Tensile strength (Gpa)	$1000 \sim 3000$	$1000 \sim 3000$	$400 \sim 800$	1260	-
Compressive strength (Gpa)	9	9	16	7.6	6.1
TRS (Gpa)	2.9	2.9	1.3	1.2	2.4

- Recommended diamond dresser by wheel shape

ingle-point diamond dressers :
Single-point diamond dressers are versatile and economical to dress straight type conventional abrasive wheels. Customers can choose diamond carat and materials dependent upon working conditions such as wheels size, wheel width, depth of cut, etc.

Recommended Depth of Cut :
Wheel grit size 20~60 : $0.025 \mathrm{~mm} \sim 0.05 \mathrm{~mm}$
Wheel grit size 80~140 : $0.015 \mathrm{~mm} \sim 0.025$
Wheel grit size 160~200: $0.01 \mathrm{~mm} \sim 0.015$
Recommended Diamond Carat:
Wheel Diameter 100~150: 1/7 ct
Wheel Diameter 175~250: 1/5 ct
Wheel Diameter 300~350: 1/4 ct
Wheel Diameter 350~400: 1/3 ct
Wheel Diameter 400~500: 1/2 ct
Wheel Diameter 500~600: 3/4 ct
Wheel Diameter 600~ : 1 ct

Available diamond :
A (Octahedron)
B (Dodecahedron)

Available carat :
Max 1 ct $\sim \operatorname{Min} 1 / 30$ ct

Available diamond :
F (Mono Crystal)
G(CVD)

Available size :
$0.6 \mathrm{~mm} \times 0.6 \mathrm{~mm} \times 3 \mathrm{~mm}$
$0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm} \times 3 \mathrm{~mm}$
$1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 3 \mathrm{~mm}$
$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 3 \mathrm{~mm}$

Specifications

	D1	L1
Standard	12	90

	L	D	S	E
Standard	50	10	1.5	2

	Pich	L	S	E
Standard	M8X1.0	16	1.0	2

	D1	L1	L2	D2	V
Standard	18	60	42	12	MT1

Specifications

- SDD-A13

	D1	D2	L1	L2	W
Standard	16	11	37	22	14

SDD-A12

	D1	D2	L1	L2	L3
Standard	10	8	43	22	8

SDD-A14

	D1	D2	D3	L1	L2	L3
Standard	16	11	8	34	19	8

SDD-A18

	D1	D2	L1	L2	W
Standard	16	11	29	15	14

F orming Diamond Dressers :
Forming diamond dressers are used for dressing specific forms into conventional abrasive wheels requiring longer tool life.

Natural diamonds have very high resistance while they could be easily broken and have unsteady tool life. On the other hand, synthetic diamonds have steady tool life. Generally, the bigger radius of diamonds can ensure longer tool life. However, the much bigger radius can get grinding wheels to be burned because it makes the grinding wheels' grit blunt.

Available diamond :
D (Maccle), E (Shape),
F (Mono crystal),
G (CVD), H (PCD)

Available carat :
Max $3 / 4$ ct $\sim \operatorname{Min} 1 / 4$ ct

Chisel

Available diamond :
D (Maccle), E (Shape),
F (Mono crystal), G (CVD)

Available carat :
Max $3 / 4 \mathrm{ct} \sim \operatorname{Min} 1 / 4 \mathrm{ct}$

Cone

Available diamond :
C (Elongated) , G (CVD)

Available carat :
Max $1 / 2$ ct $\sim \operatorname{Min} 1 / 4$ ct

Specifications

FDD-C01

	D1	L	V	R
Standard	11	30	90	0.3

FDD-C14

	D1	D2	L1	V	R
Standard	10	8	43	90	0.3

FDD-C13

	D1	D2	L1	V	R
Standard	15	11	23	90	0.3

FDD-C19

	D	L	V	R
Standard	11	46.5	70	0.3

FDD-D01

	D	L	V	R
Standard	11	40	55	0.2

FDD-D05

	D	L	w	V	R
Standard	11	45	9	55	0.2

FDD-D17

	D	L	W	V	R
Standard	9.5	44.5	6	40	0.25

FDD-D20

	D	L	V	R
Standard	8	29	55	0.2

FDD-D12

	D	L	V	R
Standard	10	45	55	0.2

FDD-D14

	D 1	D	L	V	R
Standard	12	8	32	55	0.2

FDD-D19

	D	L	V	R
Standard	11	46	60	0.3

Two or more selected diamonds are set in a metal matrix to provide multi diamond points for dressing larger and wider conventional abrasive wheels. Multi-point diamond dressers have two types. One is a general type for dressing straight type conventional abrasive wheels; the other a blade type for dressing larger and conventional abrasive profile wheels at lower cost.

Multi-point diamond dressers using diamonds made by chemical vapor deposition are suited to get high quality surface finish and consistent performance. On the other hand, multi-point diamond dressers made of elongated natural diamonds, which is called "Fliesen tool", have longer tool life.

Natural

Available diamond :

A (Octahedron),
B (Dodecahedron)

Available carat :
Max $1 / 3$ ct $\sim \operatorname{Min} 1 / 30$ ct

Blade type

Available size :

CVD $0.4 \mathrm{~mm} \times 0.4 \mathrm{~mm} \times 5 \mathrm{~mm}$ CVD $0.6 \mathrm{~mm} \times 0.6 \mathrm{~mm} \times 5 \mathrm{~mm}$ CVD $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm} \times 3 \mathrm{~mm}$ CVD $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm} \times 6 \mathrm{~mm}$ CVD $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 3 \mathrm{~mm}$ Elongated $1 / 20$ ct $\sim 1 / 80$ ct

Specifications

MDD-A01

	D	L
Standard	11	40

MDD-A09

	L	L1	W	Taper
Standard	32	22	8	MT\#No.1

- MDD-A05

	D	L
Standard	11	40

- MDD-A10

	D	L
Standard	11	29

MDD-G11

	L	T	W	H
Standard	28	5	10	6.1

- MDD-G13

	L	T	W	H
Standard	28	5	10	6.1

MDD-G21

	D	L	W1	W2
Standard	11	41	8	10

MDD-G12

	L	T	W	H
Standard	33	5	20	6.1

MDD-G14

	L	T	W	H
Standard	33	5	20	6.1

- MDD-G22

Cls

	D	L	V1	V2	R
Standard	8	29	55	10	0.3

MDD－G23

	D	L	W
Standard	11	33	10

MDD－C12

	L	T	W	H
Standard	28	5	20	6.1

－MDD－B13

	L	T	W	H
Standard	28	5	10	10

－MDD－G24
会耻相

	D	L	V1	V2	R
Standard	11	46	55	5	0.3

MDD－C14

	L	T	W	H
Standard	33	5	20	6.1

MDD－B12

ZENETIE ${ }^{\oplus}$ TECHNOLOGY

mpregnated Diamond Dressers :

Impregnated diamond dressers have tiny diamond particles bonded in metal matrix. Dressing force is spread across the fine diamonds; impregnated diamond dressers can achieve longer tool life at lower cost.

Randomly distributed impregnated diamond dressers cannot optimally show their performance as required. That is why Ehwa has developed patterned impregnated diamond dressers manufactured with
ZENESIS technology for dressing with precision.

ZENEMI ${ }^{\circ}$ IDD

(Patterned Impregnated Diamond Dresser) Patent no. 10-0428947 / US 6626167

- Suitable for longer tool life and better performance
- Available mesh : \# 20 ~ \# 60

Impregnated Diamond Dresser

- Used for economical dressing
- Available mesh : \#20 ~\#140

Specifications

- IDD-S01

	D	L	W	T
Standard	11	70	13	6

- IDD-S04

	D	D1	L	W	T
Standard	11	14	70	13	6

- IDD-R01

	D	D1	L	LT
Standard	11	9	40	8

	D	D1	L	L1
Standard	11	10	40	24

- IDD-S03

	D	L	W	T	V
Standard	11	38	13	6	15

- IDD-S05

	D	L	L1	L2	W	T
Standard	11	50	7	10	13	6

- IDD-R03

	D	D1	L	LT	V
Standard	11	9	38	8	15

IDD-R05

	D	D1	L	L1	LT
Standard	11	9	40	24	8

Burnishing tools

Burnishing tools are manufactured by natural or mono crystalline diamonds. The burnishing process is a cold process using proper pressure without removal of the work pieces. The burnishing tools are very useful for metalworking because they help get high quality mirror-like surface finish and meet dimensions as requested. The diamond burnishing tools can ensure longer tool life and good surface finish.

PCD (Poly-crystalline diamond) dressers

PCD dressers are cost-effective alternative in dressing conventional abrasive profile wheels. The PCD is easier to get desired shapes than the other diamond materials. As a result, PCD dressers can dress grinding wheels with complex profiles. The relatively lower tool life can be compensated by lower price.

Contact gauges

Contact gauges with natural diamonds or poly-crystalline diamonds have almost 100 times longer tool life than tungsten carbides or high-speed steel. The diamond contact gauges can ensure highly accurate measurement with ultra wear resistance.

LOCATIONS

Korea

Headquarters Osan

Factory Osan (Semiconductor) Factory Dongtan

Factory Pyungtaek

Factory Seochun

Factory Oksan

Overseas

Factory, Thailand
Office, GT, U.S.A.

